Misc

Susuki

image-20250425170538189

image-20250425170555793

image-20250426172211855

Rich

image-20250426174212210

image-20250426172102493

Bennett

image-20250425204505004

https://www.researchgate.net/profile/John-Giudicessi/publication/230894447/figure/fig2/AS:340527913422850@1458199589041/Electrical-activity-of-the-heart-in-health-and-disease-A-Schematic-representation-of.png

image-20250425205636883

 

image-20250425204601796

image-20250425204707076

image-20250425204835345

image-20250425210253229

image-20250426173347283

image-20250425211330261

image-20250426173437862

image-20250425211359659

https://www.ahajournals.org/cms/10.1161/CIRCRESAHA.110.226845/asset/9972c4f3-a8d9-4906-ad50-2b03ea47dc1c/assets/graphic/zhh0091177180001.jpeg

Figure 1. CICR, SOICR, and triggered arrhythmia. Left (in blue) depicts the mechanism of CICR, in which an action potential activates the voltage-dependent L-type Ca2+ channel, leading to a small Ca2+ influx. This Ca2+ entry opens the RyR2 channel in the SR, resulting in SR Ca2+ release and muscle contraction. Right (in red) denotes the mechanism of SOICR, in which spontaneous SR Ca2+ release or Ca2+ spillover occurs under conditions of SR Ca2+ overload caused, for example, by stress via the β-adrenergic receptor (b-AR)/PKA/phospholamban (PLB) signaling pathway. SOICR can activate the NCX, which, in turn, can lead to DADs and triggered activities.

Ladle

NeurotransmitterReceptor TypeSubtype NameOther Names / NotesIons ConductedEffect
Acetylcholine (ACh)IonotropicNicotinicLigand-gated ion channelNa+ in , K+ out ( some also Ca2+ permeable )Excitatory
 MetabotropicMuscarinicGPCR ( M1–M5 subtypes )— ( via second messengers )Usually excitatory ( M1 , M3 , M5 ) or inhibitory ( M2 , M4 ) depending on subtype
GlutamateIonotropicAMPA , KainateLigand-gated ion channelsNa+ in, K+ outExcitatory
 IonotropicNMDARequires glycine co-agonist , voltage-gated Mg2+ blockNa+, Ca2+ in, K+ outStrong excitatory , Ca2+-dependent signaling
 MetabotropicmGluR ( types 1–8 )GPCRs— ( via second messengers )Modulatory ( can be excitatory or inhibitory )
GABAIonotropicGABAALigand-gated Cl channelCl in ( hyperpolarizes )Inhibitory
 MetabotropicGABABGPCR activating K+ channels, inhibiting Ca2+ channels↑ K+ out , ↓ Ca2+ in ( via second messenger )Inhibitory
GlycineIonotropicGlycine receptorLigand-gated Cl channelCl in ( hyperpolarizes )Inhibitory
 Metabotropic— ( none )No known metabotropic receptor

image-20250425174252060

image-20250425143828046

image-20250425174318784

image-20250425174452703

TMP - Frame 6

ReceptorKineticsCalcium Permeable ?Voltage Dependent ?
AMPAFastNoNo
NMDASlowYesYes ( via magnesium block )

image-20250425174202936

image-20250425173916724

image-20250425173945081

image-20250425174048995

image-20250427060746385

image-20250427060725531

Engisch

image-20250426172426547

image-20250426174251387

FeatureCurare4-AP (4-Aminopyridine)
MechanismBlocks nicotinic ACh receptors at neuromuscular junctionBlocks voltage-gated K⁺ channels
EffectPrevents muscle contraction (paralysis)Enhances neurotransmitter release (prolongs action potential)
Site of ActionPostsynaptic side (muscle)Presynaptic side (nerve terminal)
Main ResultFlaccid paralysis (no depolarization)Increased ACh release, improves muscle strength
UseHistorically hunting (poison darts); research; anesthetic adjunctTreatment for disorders like Lambert-Eaton myasthenic syndrome; MS symptoms
OverallInhibits neuromuscular transmissionFacilitates neuromuscular transmission
FeatureSynaptobrevin ( zipper ) KO (VAMP KO)Synaptotagmin ( sensor ) KO
Evoked Amplitude↓↓↓ (almost abolished)↓↓↓ (almost abolished)
Evoked Frequency↓↓↓↓↓↓
Mini Amplitude↓ (reduced)Increased
Mini Frequency↓↓↓ (very rare)↑ (increased spontaneous fusion)
Docking↓ (reduced docking, fewer primed vesicles)Normal docking
Fusion↓↓↓ (both evoked and spontaneous fusion defective)Ca²⁺-triggered fusion defective; spontaneous fusion increased

image-20250425175044901

img

image-20250426172644929

Halm

image-20250425205535191

image-20250426165941565

image-20250426172905297

image-20250426174024036

https://media.springernature.com/full/springer-static/image/art%3A10.1038%2Fs41580-018-0052-8/MediaObjects/41580_2018_52_Fig1_HTML.png

https://media.springernature.com/full/springer-static/image/art%3A10.1038%2F415198a/MediaObjects/41586_2002_Article_BF415198a_Fig1_HTML.jpg

https://www.weizmann.ac.il/Biomolecular_Sciences/reuveny/sites/Biological_Chemistry.reuveny/files/uploads/calcium_signalling_scheme.jpg