• Pre-synaptic terminals of glutamatergic neurons retrieve a portion of the glutamate released in response to incoming action potentials

  • The cell membrane of these terminals contain excitatory amino-acid transporters ( EAAT ) , along with transporters such as Na+/K+-pumps , K+ channels , and likely Na+/H+ exchangers

  • The coupling stoichiometry of EAAT is cotransport of one glutamate with 3 Na+ and one H+ ,

    • all in exchange for one K+

  • You assume that the basal condition of the pre-synaptic terminal under study has the following properties :

    • Vm=65 mV

    • [Na+]e=145 mM

    • [Na+]i=10 mM

    • [K+]e=4.5 mM

    • [K+]i=150 mM

    • pHe=7.4

    • pHi=7.0

  • You predict that high synaptic activity will enhance the driving force for glutamate uptake

EK60log10( 4.5150 )91.373 mV
ENa60log10( 14510 )+69.682 mV
EH60log10( 1107.41107.0 )24.0 mV
  1. Draw a diagram of the pre-synaptic terminal that includes EAAT and the other transporters needed to achieve a steady-state Vm and pHi

image-20250412091846636


In the absence of incoming action potentials, glutamate at the pre-synaptic terminal is : [glutamate]i=1 mM and [glutamate]e=25 nM

EGlu60log10( 251091103 )+276.12 mV
  1. For the resting condition , calculate the driving force for EAAT ( and flow direction )

IonmVnzContribution ( nz( EVm ) ) ( mV )
Na+69.73+131( 69.7( 65 ) )=404.10
K91.41+111( 91.4( 65 ) )=26.40
H24.01+111( 24.0( 65 ) )=+41.0
Glutamate+276.121-111( +276.12( 65 ) )=341.12
Vm65.01+2 
Total=( 404.10 )+( 26.40 )+( 41.0 )+( 341.12 )=+77.580 mV

  1. Calculate the driving force for EAAT at the peak of an incoming action potential

IonmVnzContribution ( nz( EVm ) ) ( mV )
Na+69.73+131( 69.7( +55 ) )=44.10
K91.41+111( 91.4( +55 ) )=146.40
H24.01+111( 24.0( +55 ) )=79.0
Glutamate+276.121-111( +276.12( +55 ) )=221.12
Total=( 44.10 )+( 146.40 )+( 79.0 )+( 221.12 )=402.42 mV

High frequency action potential arrival in the terminal excites glutamate release such that : [glutamate]i=1 mM and [glutamate]e=1 mM

EGlu=60log10( 11 )=0 mV
  1. Calculate the driving force for EAAT during these inter-spike periods and at the peaks of these action potentials

Inter-Spike Periods
IonmVnzContribution ( nz( EVm ) ) ( mV )
Na+69.73+131( 69.7( 65 ) )=404.10
K91.41+111( 91.4( 65 ) )=26.40
H24.01+111( 24.0( 65 ) )=+41.0
Glutamate01-111( 0( 65 ) )=65.0
Total=( 404.10 )+( 26.40 )+( +41.0 )+( 65.0 )=+353.70 mV
At Action Potential Peak
IonmVnzContribution ( nz( EVm ) ) ( mV )
Na+69.73+131( 69.7( +55 ) )=44.10
K91.41+111( 91.4( +55 ) )=146.40
H24.01+111( 24.0( +55 ) )=79.0
Glutamate01-111( 0( +55 ) )=+55
Total=( 44.10 )+( 146.40 )+( 79.0 )+( +55.0 )=126.30 mV

Hypoxic conditions stress the pre-synaptic terminal altering the ion gradients : [glutamate]i=1 mM || [glutamate]e=3 μM [Na+]i=60 mM || [Na+]e=135 mM pHi=6.5 || pHe=6.5 Vm=20 mV

  1. Determine the reversal potential for EAAT during these hypoxic conditions.

EGlu60log10( 31061103 )+151.37 mV
ENa60log10( 13560 )+21.131 mV
EH=60log10( 1106.51106.5 )=0 mV
IonmVnzContribution ( nz( EVm ) ) ( mV )
Na+21.1313+131( 21.131( Vrev ) )= ?
K91.41+111( 91.4( Vrev ) )= ?
H01+111( 0( Vrev ) )= ?
Glutamate+151.371-111( +151.37( Vrev ) )= ?
Vrev=0=( 31( ( 21.131 )( Vrev ) ) )+( 11( ( 91.4 )( Vrev ) ) )+( 11( ( 0 )( Vrev ) ) )+( 11( ( 151.37 )( Vrev ) ) )
Vrev=( 3ENa )+( EH )+( EGlu )+( EK )6
Vrev=( 321.131 )+( 0 )+( ( 151.37 ) )+( 91.4 )6=29.896 mV

  • Astrocytes adjacent to pre-synaptic terminals of glutamatergic neurons also retrieve a portion of the glutamate released in response to incoming action potentials.

  • These astrocytes convert glutamate to glutamine and then extrude glutamine for retrieval by pre-synaptic terminals ( glutamine-shuttle ) , such that post-synaptic glutamate receptors remain unaware

  • Cell membranes of these astrocytes contain Na+-dependent neutral amino-acid transporters ( SNAT3 ) , along with transporters such as Na+/K+ pumps , K+ channels , and likely others

  • The coupling stoichiometry of SNAT3 is cotransport of one glutamine with one Na+ in exchange for one H+

  • Cell membranes of these pre-synaptic terminals contain SNAT1

  • The coupling stoichiometry of SNAT1 is cotransport of one glutamine with one Na+

  • You assume that for the synaptic locale under study , the basal condition has the following properties :

    • Vm=65 mV

    • [Na+]e=145 mM

    • [Na+]i=11.0 mM

    • [K+]e=4.5 mM

    • [K+]i=150 mM

    • pHe=7.4

    • pHiA=7.2

    • [glutamate]e=25 μM

    • [glutamate]iA=1.2 mM

    • [glutamate]iN=0.3 mM

  • You predict that extracellular glutamine concentrations will remain in a narrow range that supports continual glutamine uptake by the pre-synaptic terminal

ENa60log10( 14511 ) +67.199 mV
EK60log10( 4.5150 ) 91.373 mV
EH60log10( 1107.41107.2 ) 12.0 mV
EGluA=60log10( 251061.2103 )=+100.87 mV
EGluN=60log10( 251060.3103 )=+64.751 mV
  1. Draw a diagram of the synaptic locale that includes SNAT and the other transporters and enzymes needed to achieve a glutamate re-supply for the pre-synaptic terminal

image-20250412124023015

  1. Calculate the driving force for SNAT1 and for SNAT3 during the inter-spike periods

SNAT1
IonmVnzDriving Force ( EVm ) ) ( mV )Contribution ( nzDF ) ( mV )
Na+67.1991+1( +67.199 )( 65 )=132.2011132.20=132.20
Glutamine?10( 0 )( 65 )=651065=0.0
Total=( 132.20 )+( 0 )=+132.20 mV
SNAT3
IonmVnzDriving Force ( EVm ) ) ( mV )Contribution ( nzDF ) ( mV )
Na+67.1991+1( +67.199 )( 65 )=132.2011132.20=132.20
H12.01+1( 12 )( 65 )=53.01153.0=53.0
Glutamine?10( 0 )( 65 )=651065=0.0
Total=( 132.20 )+( 53 )+( 0 )=+185.20 mV

  1. Calculate the driving force for SNAT1 and for SNAT3 at the peak of an incoming action potential

SNAT1
IonmVnzDriving Force ( EVm ) ) ( mV )Contribution ( nzDF ) ( mV )
Na+67.1991+1( +67.199 )( +55 )=12.1991112.199=12.199
Glutamine?10( 0 )( +55 )=+5510+55=0.0
Total=( 12.199 )+( 0 )=+12.199 mV
SNAT3
IonmVnzDriving Force ( EVm ) ) ( mV )Contribution ( nzDF ) ( mV )
Na+67.1991+1( +67.199 )( +55 )=12.1991112.199=12.199
H12.01+1( 12 )( +55 )=67.01167.0=67.0
Glutamine?10( 0 )( +55 )=+5510+55=0.0
Total=( 12.199 )+( 67.0 )+( 0 )=54.801 mV

  1. Determine the [glutamine]e at which the transport direction changes ( reversal point ) for SNAT1 and for SNAT3 during the inter-spike periods. ( Assume that only [glutamine]e changes )

SNAT1
IonmVnzDriving Force ( EVm ) ) ( mV )Contribution ( nzDF ) ( mV )
Na+67.1991+1( +67.199 )( 65 )=132.2011132.20=132.20
Glutamine?10( ? )( 65 )= ?10 ?= ?
0=( 132.20 )+( ( EGln( 65 ) ) )
EGln=197.20
197.20=60log10( [glutamine]e[glutamine]i )
[glutamine]e=5.1681104 M
SNAT3
IonmVnzDriving Force ( EVm ) ) ( mV )Contribution ( nzDF ) ( mV )
Na+67.1991+1( +67.199 )( 65 )=132.2011132.20=132.20
H12.01+1( 12 )( 65 )=53.01153.0=53.0
Glutamine?10( ? )( 65 )= ?10 ?= ?
0=( 132.20 )+( 53.0 )+( ( EGln( 65 ) ) )
EGln=250.20
250.20=60log10( [glutamine]e[glutamine]i )
[glutamine]e=6.7608105 M

Hypoxic conditions stress the synaptic locale altering the ion gradients : [glutamate]i=1 mM || [glutamate]e=30 μM [Na+]i=60 mM || [Na+]e=135 mM [K+]i=100 mM || [K+]e=15 mM pHi=6.5 || pHe=6.5 Vm=20 mV

  1. Determine the range of [glutamine]e that allows the glutamine-shuttle to operate during these hypoxic conditions.

ENa60log10( 13560 ) +21.131 mV
EK60log10( 15100 ) 49.435 mV
EH60log10( 1106.51106.5 ) 0.0 mV
EGlu=60log10( 301061103 )=+91.373 mV
DFNa=( 21.131 )( 20 )=+41.131 mV
SNAT 1
0=( 41.131 )+( ( EGln( 20 ) ) )
EGln=61.131
61.131=60log10( [glutamine]e[glutamine]i )
[glutamine]e=0.095752 M
SNAT 3
0=( 41.131 )+( ( 0( 20 ) ) )+( ( EGln( 20 ) ) )
EGln=81.131
81.131=60log10( [glutamine]e[glutamine]i )
[glutamine]e=0.046183 M