1. Calculate how many free H+ ions are inside a mitochondrion

    • You start by assuming that :

      • a mitochondrion is a sphere with a diameter of 1 µm

      • a mitochondrial matrix pH of 8.0 , then 7.4 , and then 7.0

    • 1 cm3 = 1 milli-Liter = 10-3 Liter

    • 1 µm3 = 1 femto-Liter = 10-15 Liter

    • 1 m3 = 1,000 Liters

    pH=log( [ H+ ] )
    V=πd36
    V=π( 1106 m )36=5.23601019 m3
    L=5.23601019 m3103=5.23601016 Liters

    pH=8=1og10( [ 1108 ] )[ H+ ]=1108 mol H+1 Liter
    1108 mol H+1 Liter5.23601016 Liters=5.23601024 mol H+
    5.23601024 mol H+6.022140761023 particlesmol=3.1532 H+ ions

    pH=7.4=1og10( [ 1107.4 ] )[ H+ ]=1107.4 mol H+1 Liter
    1107.4 mol H+1 Liter5.23601016 Liters=2.08451023 mol H+
    2.08451023 mol H+6.022140761023 particlesmol=12.553 H+ ions

    pH=7.0=1og10( [ 1107.0 ] )[ H+ ]=1107.0 mol H+1 Liter
    1107.0 mol H+1 Liter5.23601016 Liters=5.23601023 mol H+
    5.23601023 mol H+6.022140761023 particlesmol=31.532 H+ ions

    • Explain how this can occur

      • in the definition of pH

        • more positive pH = less available protons

        • less positive pH = more available protons


  • You have measured the recovery of intracellular pH in response to acidification induced after an NH4Cl pre-pulse in cells under two conditions.

  • The two cellular conditions had differences in Vm , normal and depolarized , which yielded the following data :

 Vm ( mV )βint ( molcm3pH unit )Recovery at pHi = 7 ( pH units )22Na uptake amiloride-sensitive ( molcm2s ) H+ flux ( molcm2s )
Normal90251060.00.00.0
Depolarized20251061001062.510651012
Depolarized20501065105 11011
  • The data was gathered from large spherical cells ( 120 μm diameter )

  • Amiloride = blocks the Na+/H+ exchanger from functioning

  • All of the intracellular pH recovery in depolarized cells was inhibited by amiloride

  1. Calculate the net fluxes of H+ and Na+ through the Na+/H+ exchanger in the normal cells and in the depolarized cells

    1 m=100 cm
    1 m3=( 100 )3 cm
    1 m3=( 1102 )3 cm
    1 m3=1106 cm3
    1 m2=1104 cm2

    Surface Area=πd2
    SA=π( 120106 m )2=4.5239108 m21104 cmm2=4.5239104 cm2

    Volume=πd36
    V=π( 120106 m )36=9.04781013 m31106 cm3m3=9.0478107 cm3

    H+ flux=βΔpHΔtime
    H+ flux=βΔpHΔ timeVolumeSurface Area
    H+ flux=25106 molcm3  pH unit100106 pH unitsecond9.0478107 cm34.5239104 cm2=51012 molcm2second

    H+ flux=50106 molcm3  pH unit100106 pH unitsecond9.0478107 cm34.5239104 cm2=11011 molcm2second

  • The cells were then exposed to a weak acid that doubles the intrinsic buffering power ( βint )

  1. Calculate the rate of recovery of pHi in the depolarized cell

    ΔpHΔt=H+ fluxSAβV
    pHi=51012 molcm2second4.5239104 cm250106 molcm3  pH unit9.0478107 cm3=5105 pH unitsecond
  2. Calculate the influx of Na+ into the depolarized cell

    • 1 : 1 , so 51012 molcm2second

  3. Explain what the measured fluxes imply about the properties of the Na+/H+ exchanger

    • At RMP ( -90 mV ) , there is no flux

    • But it is flowing at depolarized potentials ( -20 mV )

  4. Estimate the driving force for this exchanger. ( Try plotting driving force versus Vm )

    Δμ=RTln( [Na]i[H]o[Na]o[H]i )
    Δμ=8.31446261815324 Jmol K( 273.15+37 )ln( ( 10103 )( 107.4 )( 145103 )( 107.0 ) )=1.5209104 Jmol