image1

milli Molar=milli OsmolesVan’t Hoff Factor ( i )

Urine Flow Rate ( UFR )=VolumeTime
Flow=ConcentrationMobilityAreaDriving Force

Glomerular Filtration Rate ( GFR )=UxUFRPx
GFR=LpA( ΔPΔΠ )=KfilPfil
GFR=UinulinPinulinUFR

filteredexcreted=reabsorbedsecreted
( filteredexcreted )+secreted=reabsorbed

Renal Plasma Flow ( RPF )=UPAHUFRPPAH
Filtration Fraction ( FF )=GFRRPF=CinulinCPAH
RPFCPAHFiltration Fraction ( FF )

Filtered Loadx=GFRPx

Excretion Ratex=UxUFR

Fractional Extrection( FEx )=Extrection RatexFiltered Loadx100%

Fractional Excretion of Creatinine( FECr )=UCrUFRPCrGFR=1
Fractional Excretion of Water( FEH2O )=UFRGFR100 %
Fractional Reabsorption ( FR % )=( 1UFRGFR )100 %

Net Filtration Pressure( Pfil )=ΔPΔΠ=( PcapPisf )( ΠcapΠisf )

Table 1 - Renal Function Chart

 Early MorningLater Same Day
UFR0.7 mL/min15.1 mL/min
UCr14.3 mM0.65 mM
PCr80 μM76 μM
UNa196 mM9 mM
PNa147 mM144 mM
Uosm800 mili Osmoles50 mili Osmoles
( U/P )Cr  
GFRL/minL/min
FEH2O%%
FRH2O%%
Na Loadmoles / minmoles / min
Na Excretedmoles / minmoles / min
FENa%%
UCr%%
CosmL/minL/min

 

  1. Indicate how glomerular filtration rate ( GFR ) changed during this day ( Table 1 )

    GFRmorning=14.3 mM0.7 mLmin0.08 mM=125 mL1 minute
    GFRafternoon=0.65 mM15.1 mLmin0.076 mM=129.145 mL1 minute
  2. Indicate how fractional excretion of water ( Table 1 ) changed during this day.

    FEmorningcreatinine=14.3 mM0.7 mLmin0.08 mM125 mLmin=1
    FEmorningH2O=0.7 mLmin125 mLmin100%=0.559 %
    FEafternooncreatinine=0.65 mM15.1 mLmin0.076 mM129 mLmin=1
    FEafternoonH2O=15.1 mLmin129 mLmin100%=11.705 %
  3. Indicate how fractional reabsorption of water ( Table 1 ) changed during this day.

    FRmorningH2O=( 10.7 mLmin125 mLmin )100 %=99.44 %
    FRafternoonH2O=( 115.1 mLmin129 mLmin )100 %=87.92 %
  4. Calculate filtered load for Na+ ( Table 1 ) during this day.

    PmorningNa=147 milli moles1 Liter1 mol1103 milli moles1 Liter1103 milliliters=147106 molmilliliter
    Filtered LoadmorningNa=125 mLmin147106 molmilliliter=0.018375 molmin
    PafternoonNa=144 milli moles1 Liter1 mol1103 milli moles1 Liter1103 milliliters=144106 molmilliliter
    Filtered LoadafternoonNa=129 mLmin144106 molmilliliter=0.018576 molmin
  5. Calculate Na+ excretion rate ( Table 1 ) during this day.

    UmorningNa=196 milli moles1 Liter1 mol1103 milli moles1 Liter1103 milliliters=196106 molmilliliter
    ERmorningNa=196106 molmilliliter0.7 mL1 min=0.000137199 molmin
    UafternoonNa=9 milli moles1 Liter1 mol1103 milli moles1 Liter1103 milliliters=9106 molmilliliter
    ERafternoonNa=9106 molmilliliter15.1 mL1 min=0.0001359 molmin
  6. Calculate fractional Na+ excretion ( Table 1 )

    FEmorningNa=0.000137199 molmin0.018375 molmin100%=0.7466666666666666%
    FEafternoonNa=0.0001359 molmin0.018576 molmin100%=0.7315891472868218%
  7. Calculate fractional Na+ reabsorption ( Table 1 )

    FRNa=100%FENa
    FRmorningNa=100%0.7466666666666666%=99.25333333333333%
    FRafternoonNa=100%0.7315891472868218%=99.26841085271317%
  8. Calculate osmolar clearance ( Cosm , Table 1 )

    Osmolar Clearance( Cosm )=UosmUFRPosm
    Plasma Osmolarity( Posm )2[ Na+ ]
    • because each sodium ion is accompanied by anions ?

      • under normal conditions

    Pmorningosm2147 mM=294 mOsmL
    Cmorningosm=800 mOsmL0.7 mLmin294 mOsmL=1.9047619047619047 mLmin
    Cafternoonosm=50 mOsmL15.1 mLmin288 mOsmL=2.6215277777777777 mLmin
  9. Using the renal function data ( Table 1 ) , speculate on what likely occurred for this individual during this day.

    • Observation:

      • Significant Increase in UFR: From 0.7 mL / min to 15.1 mL / min.

      • Decrease in Urine Osmolarity: From 800 mOsm / L to 50 mOsm / L.

      • Decrease in Urine Na⁺ Concentration: From 196 mM to 9 mM.

      • GFR Remained Relatively Constant: Slight increase from 125 to 129 mL / min.

    • Speculation:

      • The individual likely consumed a large volume of water during the day , leading to:

        • Water Diuresis: Increased urine output to eliminate excess water.

        • Dilute Urine: Low urine osmolarity due to excretion of free water.

        • Conservation of Na⁺: Low fractional excretion of Na⁺ indicates the kidneys reabsorbed most Na⁺ to maintain electrolyte balance.

    • Answer:

      • The individual probably ingested a large amount of water, causing water diuresis characterized by high urine flow rate, dilute urine, and low urinary Na⁺ concentration, while maintaining stable GFR and efficient Na⁺ reabsorption.

  10. Plasma protein concentration is ~40 g/L and glomerular filtrate contains 0.01 to 0.1 g/L , calculate the daily filtered load of plasma protein.

    Daily GFR=GFR60 min1 hour24 hours1 day
    Daily GFR=125 mL1 minute1 Liter1000 milliliters60 min1 hour24 hours1 day=180 LitersDay
    Filtered Loadminimum=180 LitersDay0.01 gramsL=1.8 gramsDay
    Filtered Loadmaximum=180 LitersDay0.1 gramsL=18 gramsDay
  11. A healthy individual reports a plasma creatinine concentration of 100 µM and GFR of 120 mL / min. Assume that creatinine is freely filtered , not secreted , and not reabsorbed. Calculate the daily excretion rate for creatinine by the kidney. Determine the daily production rate for creatinine.

    • since creatinine is freely filtered and neither reabsorbed nor secreted , the excretion rate equals the filtered load

    Filtered Load( FLCr )=GFRPCr
    FLCr=120 mLmin1 Liter1000 mL1104 mol1 Liter1.2105 molmin
    Daily Excretion Rate=1.2105 molmin1440 min1 Day=0.01728 molDay
    • in steady state , the daily production equals daily excretion ,

      • therefore , daily production rate also equals 17.28 milli moles / day

  12. In a patient with acute renal failure, GFR is reduced to almost zero. Determine how long it will take for the plasma concentration of an end-product of metabolism ( creatinine for example ) to be doubled.

    • with GFR near zero , creatinine is not being excreted. its being produced continuously

    • Volume of Distribution ( Vd ) = creatine distributes in total body water ( ~60% of body weight ). For a 70 kg person :

      • Vd=70 kg0.6=42 Liters

    • Initial amount of creatine in the body ( [ Cr ]initial ) :

    • [ Cr ]initial=PCrVd=100106 molLiter42 Liters=4.2103 mol

    • From Question 11 , the creatine production rate ( Rp )=0.01728 molDay1 Day24 Hours=0.00072 molHour

    • Time ( t ) it takes to double [ Cr ]initial :

      • 2[ Cr ]initial=[ Cr ]initial+Rpt

      •  , t=[ Cr ]initialRp

    t=4.2103 mol0.00072 molHour=5.833333333333333 hours
  13. The healthy individual has one kidney removed for transplant to a close blood relative. Estimate their rate of creatinine excretion immediately after surgery. Estimate their excretion rate of creatinine after 24 hours. Comment on changes in their plasma creatinine concentration after surgery?

  14. The plasma concentration of para-aminohippurate ( PAH ) was measured as 68 µM and urine PAH concentration was 31 mM , together with a urine flow rate of 1.2 mL/min. Calculate PAH clearance. Estimate renal plasma flow. Calculate the filtration fraction.

  15. Using the filtration fraction, calculate the mean glomerular oncotic pressure if systemic oncotic pressure was 25 mmHg.

  16. The proximal tubular osmotic gradient consists of luminal hypo-osmolarity ( 287 mOsM ) and interstitial hyper-osmolarity ( 293 mOsM ) , compared with intracellular osmolarity ( 290 mOsM ). Determine the osmotic gradient in mmHg between the lumen and cell, as well as between cell and peritubular interstitium.

  17. The transport maximum for PAH is 0.4 mmole/min , and when plasma PAH concentration is increased to 1.2 mM , calculate the rate of PAH return to the systemic circulation.

  18. After two hours of copious vomiting, a previously healthy individual is found to have a plasma pH of 7.55 , and a PaCO2 of 40mmHg.

    Indicate the cause of the alkalosis.

    Estimate the plasma bicarbonate concentration in the circumstance described.

    Subsequent respiratory responses to this alkalosis bring plasma pH back down to 7.45 :

    Indicate the respiratory response and its effect on PaCO2 and bicarbonate concentration.

    Indicate the name for this response.

    Indicate how acid-base balance and a normal PaCO2 and bicarbonate concentration are achieved over a longer period of time.