Lecture 2

Readings

http://umdberg.pbworks.com/w/page/63045403/Organizing%20the%20idea%20of%20energy%20%282013%29

http://umdberg.pbworks.com/w/page/63045599/Enthalpy%20%282013%29

Energy Types

Kinetic Energy
Kinetic Energy=massveloctiy22

 

Potential Energy
Elastic Potential Energy=Spring Constant (K)xdistance22
Gravitational Potential Energy=massgravityheight
Electric Charge Potential Energy=Coulombs Constant (K)q1q2Radius (r)

 

Thermal Energy

 

Chemical Energy

 

Enthalpy

http://umdberg.pbworks.com/w/page/63045599/Enthalpy%20%282013%29

Enthalpy (H)=Internal Energy (U)+(Pressure (p)Volume (V))
Work (Energy)=ForceDistance

 

Basic Problems

1 Calorie=4.185 Joules1 eV=1.6021019Joules

A. If a particular molecule has a bond dissociation energy of 1 eV, how much energy would be needed (in kJ = kilo Joules) to break all the bonds in one mole of molecules -- counting no energy for interactions with the environment? Remember, 1 mole=6.0221023molecules or atoms

1 eVmolecule1.61019Joules1 eV6.0221023molecules1 mol1 kJ1000 Joules=96.48845999999999 kJ1 mol

B. For a single H2 molecule , HX22H , the dissociation energy is 4.52 eV. How much energy would have to be put in ( in kJ ) to dissociation a mole of hydrogen molecules?

4.52 eV1 molecule H2196.48845999999999 kJ1 mol1 eV1 molecule=436.1278391999999 kJ1 mol

C. Suppose we are putting in energy to dissociate a bubble consisting of 1 mole of hydrogen molecules at STP ( p = 1 atmosphere = 105Newtonsmeter2 and T = 300 K ). As we put in energy to dissociate the hydrogens, some of the energy we put in will go into expanding the bubble, some will heat up the gas and some energy will flow out to maintain T = 300 K. Calculate the factor pΔV needed to find the enthalpy change by using the ideal gas law, pV=nRT , where n is the number of moles of gas.

Initial:P0V1=1 moleR300KFinal:P0V2=2 molesR300K
P0ΔV=1 moleR300K
=1 mole8.31 Joules1 moleK300K=2.5 kJ

 

D. What is the total enthalpy change ( in kJ/mol ) for the dissociation of a mole of hydrogen gas at STP? How does this compare to the dissociation energy for that mole of gas? Does it make sense that sometimes the enthalpy is described without paying attention to the volume change? From the reading, remember that enthalpy is given by: ΔH=ΔU+(pΔV)

ΔH=435 kJ1 mol+(2.5 kJ)=437.5 kJ1 mole